
The X Steps to Container 
Excellence
Benjamin Holmes
Solution Architect, Public Sector



Why Should I Bother?



CONTAINERS ARE (STILL) LINUX

Virtual Machine

Application

OS dependencies

Operating System

VM Isolation
Complete OS
Static Compute
Static Memory
High Resource Usage

Container Isolation
Shared Kernel
Burstable Compute
Burstable Memory
Low Resource Usage

Container Host

Container

Application

OS dependencies



SIMPLER SOFTWARE DELIVERY

Container

Application

OS dependencies

Container Host

Infrastructure

I’ve got this 
container thing? No problem!



POLYGLOT

Container

Application

OS dependencies

Container Host

Infrastructure

I’ve written some 
PERL! Good for you!



ENCAPSULATION

Container

Application

OS dependencies

Container Host

Infrastructure

I need to patch the 
container host Go ahead!



REPEATABILITY

Container

Application

OS dependencies

Container Host

Infrastructure

Can you recreate 
the issue? Sure!



PROVENANCE

Container

?

?

Container Host

Infrastructure

lolYOU GOT THAT FROM 
WHERE?!!



PROVENANCE

Container

Application

OS Dependencies

Container Host

Infrastructure

Oh, alright.Seriously, Security 
want to check it Out



Container

Application

OS dependencies

Container

Application

OS dependencies

OPENSHIFT CONTAINER PLATFORM

Container

Application

OS dependencies

Container Host

Infrastructure

Oh, My app is more 
than one 

container...
$£*&!!We’ve got 

OpenShift for that!



Nice. So Will My App Containerise?



MOST THINGS WILL CONTAINERISE, BUT...

● Does it run as root?

● Does it have esoteric networking requirements?

● Does it contain more than one process?

● Does it have dependencies on specific hardware or architectures?

● Does it require specific kernel or host capabilities?

● Does it have licence costs or usage constraints?



https://imgflip.com/memegenerator/You-Should-Feel-Bad-Zoidberg



Monoliths

Brown Field

Requires 
Modernisation

Stateful 
workloads

COTS

Potentially 
Suitable

Microservices

Green Field

Good Fit

FaaS

Green Field

Good Fit

A GENERAL RULE OF THUMB



Sounds Good. Now What?



WHAT IS A CONTAINER NATIVE DEVELOPMENT?

● Uses Container Platform features

● Abstracted from Infrastructure

● Resilient

● Consistent

?



WHAT SHOULD MY PLATFORM PROVIDE?

OBSERVABILITY SCALABILITY FLEXIBILITY



MY PLATFORM IS OPENSHIFT. WHAT’S YOURS?
Self-Service

Multi-language

Automation

Collaboration

Multi-tenant

Standards-based

Web-scale

Open Source

Enterprise Grade

Secure



APPROACHES ARE ARCHITECTURE AGNOSTIC

‘DISTRIBUTED 
MICROLITH’

MICROSERVICE

MONOLITH

EVENT-DRIVEN 



WHAT ENDPOINTS SHOULD MY APP PROVIDE?

● Health Checks

● Metrics Endpoints

● Thread Dump Generator

● Dynamic Logging Level Switch

● API Contract



WHAT METRICS SHOULD MY APP PROVIDE?

● Connection Pools

● Last Request Timestamps

● Request / Error / Thread Counts

● Garbage Collection Metrics



HOW SHOULD MY APP BE CONFIGURED?

● Runtime Flags

● ConfigMaps, Secrets, and ENV VARS

● Service Serving Certificates

● Feature Flags



WHAT SHOULD MY APP BE LOGGING?

● Consistent Formatting

● Correlation IDs

● Default to STDOUT



HOW SHOULD I MAKE MY APP MORE RESILIENT?

● N > 1 Replicas

● Lifecycle Hooks

● Wiping the Slate



BUT MY APP IS SPECIAL BECAUSE REASONS...

● Common Base Images

● Service Mesh

● Sidecar Containers



SOMETIMES IT CAN FEEL A BIT LIKE...



So How Should I Containerise My App?



THE APPLICATION LIFECYCLE CAN BE A MONSTER...

!!!

https://pixabay.com/en/monster-nasty-devil-teufelchen-602548/

CONTINUOUS INTEGRATION

UNIT TESTING
DEPENDENCY CHECKING

VULNERABILITY SCANNING
PERFORMANCE TESTING

CONTINUOUS DELIVERY
CODE QUALITY ASSESSMENTS



...SO LET’S EMPOWER DEVS TO FIGHT IT

Application 
Lifecycle 

Management

ALM

ALM

ALM ALM

ALM

ALM



TRUST THE PIPELINE

● Take ownership of Container content

● Define ‘Minimal Good’

● Audit the build and deployment process



INDUSTRIALISE THE PIPELINE

● Path of Least Resistance

● Opinionated, yet Flexible

● Open / Inner Sourced



In Summary



IN SUMMARY

● Better app design - build for the platform, not against it

● Make use the capabilities provided by a Service Mesh

● Learn to love the Pipeline!



Thank You


